大家好,今天小编关注到一个比较有意思的话题,就是关于蝴蝶定理公式小学奥数的问题,于是小编就整理了3个相关介绍蝴蝶定理公式小学奥数的解答,让我们一起看看吧。
小学奥数蝴蝶定理的内容是什么?
定义蝴蝶定理(Butterfly Theorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点X和Y,则M是XY的中点。

去掉中点的条件,结论变为一个一般关于有向线段的比例式,称为"坎迪定理",
不为中点时满足:1/MY-1/MX=1/MQ-1/MP ,这对2,3均成立。
蝴蝶定理(Butterfly theorem),是古典欧式平面几何的最精彩的结果之一。
这个命题最早出现在1815年,而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,由于其几何图形形象奇特,貌似蝴蝶,便以此命名。
定理历史这个命题最早作为一个征解问题出现在公元1815年英国的一本杂志《男士日记》(Gentleman's Diary)39-40页(P39-40)上。有意思的是,直到1972年以前,人们的证明都并非初等,且十分繁琐。这篇文章登出的当年,英国一个自学成才的中学数学教师W.G.霍纳(他发明了多项式方程近似根的霍纳法)给出了第一个证明,完全是相等的;另一个证明由理查德·泰勒(Richard Taylor)给出。另外一种早期的证明由M.布兰德(Mile Brand)1827年的一书中给出。最为简洁的证法是射影几何的证法,由英国的J·开世在"A Sequel to the First Six Books of the Elements of Euclid"给出,只有一句话,用的是线束的交比。"蝴蝶定理"这个名称最早出现在《美国数学月刊》1944年2月号,题目的图形象一只蝴蝶。1981年,Crux杂志刊登了K.萨蒂亚纳拉亚纳(Kesirajn Satyanarayana)用解析几何的一种比较简单的方法,利用直线束,二次曲线束。
如图,在梯形中,存在以下关系:
(1)相似图形,面积比等于对应边长比的平方S1:S2=a^2/b^2
(2)S1︰S2︰S3︰S4= a^2︰b^2︰ab︰ab ;
(3)S3=S4 ;
(4)S1×S2=S3×S4(由S1/S3=S4/S2推导出)
(5) AO:BO=(S1+S3):(S2+S4)
欢迎你的留言!!!
蝴蝶定理小学奥数题?
蝴蝶定理是平面几何的古典结果。
蝴蝶定理最先是作为一个征求证明的问题。由于其几何图形形象奇特、貌似蝴蝶,便以此命名。
定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。出现过许多优美奇特的解法,其中最早的,应首推霍纳在职815年所给出的证法。
三角形蝶形定理计算公式?
蝴蝶定理公式: XM = MY 。蝴蝶定理( ButterflyTheore m ),是古代欧氏平面几何中最精彩的结果之一。这个命题最早出现在1815年,由 W . G .霍纳提出证明。< br >平面几何指按照欧几里得的《几何原本》构造的几何学。也称欧几里得几何。平面几何研究的是平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度,位置关系)。
平面几何采用了公理化方法,在数学思想史上具有重要的意义。
到此,以上就是小编对于蝴蝶定理公式小学奥数的问题就介绍到这了,希望介绍关于蝴蝶定理公式小学奥数的3点解答对大家有用。